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Abstract. Vegetation fires are an important process in the Earth system. Fire intensity locally impacts fuel consumption,

damage to the vegetation, chemical composition of fire emissions but also how fires spread across landscapes. It has been

observed that fire occurrence, defined as the frequency of active fires detected by the MODIS sensor, is related to intensity

with a hump-shaped empirical relation meaning that occurrence reaches a maximum at intermediate intensity. Raw burned

area products obtained from remote-sensing can not discriminate between ignition and propagation processes. Here we use

the newly delivered global FRY database, which provides fire patch functional traits including fire patch size from satellite

observation, to go beyond burned area, and to test if fire size is driven by fire intensity at global scale as expected from

empirical fire spread models. We show that in most regions of the world the linear relationship between fire intensity and fire

patch size saturates for a threshold of intermediate intensity fires. The value of the threshold differs from one region to

another, and we suggest that it might be driven by drought, and the amount of available biomass. In some regions, once this

threshold is reached, we also observe that fire size decreases for the most intense fires, which mostly happen in the late fire

season. According to the percolation theory, we suggest that this effect is a consequence of the increasing fragmentation of

fuel continuity along the fire season so that landscape-scale feedbacks should be developed in global fire modules.

1 Introduction

Fire is a major perturbation of the Earth system, which impacts the biomass distribution and vegetation structure, the carbon

cycle,  global  atmospheric  chemistry, air  quality  and climate (Bowman et  al.  2009).  Fire  is  therefore recognized  as  an

essential climatic variable (GCOS 2011), and the potential impact of global warming on drought severity and fire season

length is an important research topic (Flannigan et al. 2009, Krawchuk et al. 2009, Aragão et al. 2018). As a result, most

Dynamic Global Vegetation Models (DGVMs) have included fire modules (see Hantson et al. 2016, Rabin et al. 2017 for a

review) to provide reliable prediction of vegetation dynamics. Substantial efforts have been devoted in the past decades to

create reliable global burned area, active fires and fire intensity global datasets which allow to quantify the fire perturbation

since the beginning of the 2000’s (Mouillot et al. 2014) and for benchmarking of DGVMs fire modules.
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A fire can be decomposed as a two-step process, the ignition and the propagation (Pyne 1996, Scott et al. 2014). Potential

fire ignitions are set by lightning strikes and humans (deliberately or accidentally), and the probability that an ignition turns

into  a  spreading  fire  event  mainly  depends  on  fuel  type  and  its  moisture  content  at  the  location  of  the  ignition.  The

Rothermel’s equation (Wagner 1969,  Rothermel  1972)  has  long been  used to  model  fire  propagation in  landscape fire

succession models (Cary et al. 2006), whose rate of spread scales with a power function of the wind velocity, landscape

slope  and  fire  intensity.  However,  this  model,  used  in  most  DGVM  processed-based  fire  modules,  has  only  been

benchmarked on experimental and localized fires, discarding topographic and landscape effects. However, for larger natural

fires, the continuity of the fuel bed also has an impact on fire propagation: a homogeneous fuel bed usually promotes fire

propagation (Baker et al. 1994) while fragmented landscape with a heterogeneity of fuel patches reduces fire spread (Turner

et al. 1989). On the other hand, the velocity of fire propagation determines the amount of fuel entering the combustion zone,

and therefore feeds back on the intensity of the fire event. In addition to its coupling with fire propagation, fire intensity also

significantly impacts the fuel combustion completeness (Crutzen et al. 1979), the chemical composition of the emissions

(Tang et al. 2017), the amplitude and severity of vegetation damage and its post-fire regeneration ability (Bond and Keeley et

al. 2005). As a result, analyses focusing on fire patches rather than on raw burn area have emerged in the last decade in order

to study the fire patch size distribution (Archibald et al. 2010, Hantson et al. 2015, Laurent et al. 2018) or as a tool to map

the different fire regimes at global scale (Archibald et al. 2013).

Recent studies (Pausas and Ribeiro et al. 2013, Luo et al. 2017) have shown that fire occurrence, defined as the number of

remotely detected active fires in unit of time per unit area, increases with fire intensity up until a threshold is reached (so-

called  Intermediate  Fire  Occurrence-Intensity  (IFOI)  hypothesis)  above  which  occurrence  decreases  with  increasing

intensity. Since ignition and propagation are different processes and are not driven by the same climatic variables,  it  is

necessary to go beyond fire occurrence and burned area and to consider individual fire events. Here we document and

investigate the relationship between fire patch size derived from BA data and fire radiative power (FRP) at global scale

based  on  remote  sensing  information.  FRP  measures  the  energy  emitted  through  radiative  processes  released  during

combustion, and can be associated with fire intensity (Wooster et al. 2005, Ichoku et al. 2008, Barrett and Kasischke 2013,

Wooster et al. 2013). A positive relationship between fire patch size and fire intensity is expected from the Rothermel’s

equation at least for small fire size, but we do not know if this holds up at global and regional scale and for bigger fires :

where landscape fragmentation could act as a natural barrier against fire propagation, fire patch size may not continue to

increase with fire intensity above a certain size. To uncover the size-intensity relationships, we matched the information on

fire patch size recovered from the FRY global database (Laurent et al. 2018) based on the MODIS and MERIS sensors, with

fire radiative power (FRP) using active fire pixel data from the MCD14ML dataset.

2

35

40

45

50

55

60

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-334
Manuscript under review for journal Biogeosciences
Discussion started: 23 August 2018
c© Author(s) 2018. CC BY 4.0 License.



2 Data and Methodology

We used the FRY database containing the list of fire patches characterized by their morphological traits, including fire patch

size at global scale (Laurent et al. 2018). Fire patches were derived from the MERIS fire_cci v4.1 (later called FireCCI41,

Chuvieco et al. 2016) and the MCD64A1 Collection 6 (Giglio et al. 2016) burned area (BA) pixel products. The FireCCI41

product provides the pixel burn dates for the period 2005-2011 and is derived from the ENVISAT-MERIS sensor, with a

spatial resolution of 300x300m, a 3-day revisist frequency at the equator, The MCD64A1 product, derived from the MODIS

sensors, provides pixel burn dates at global scale over the period 2000-2017 with a coarser resolution (~500x500m) but a

more frequent revisit time (1 day at equator), The pixel burned dates are combined using a flood-fill algorithm (Archibald et

al. 2009), which is parametrized by a cut-off value. This cut-off value corresponds to the maximum time difference between

the burn date of neighbouring pixels belonging to the same fire patch. The datasets have been thoroughly compared by the

authors of the FRY database, locally compared using North America Forest Service fire patch database (Chuvieco et al.

2016) and validated landsat fire polygons in the Brazilian cerrado (Nogueira et al.2017). Fire patches in FRY are organized

in 8 datasets (2 surveys times 4 cut-off values),  and for each individual fire patch, a set of variables,  called fire patch

functional traits, are provided such as the geo-location of the patch centre, the fire patch size (later called FS, in hectares),

and different indices on fire patch morphology. Standard Deviation Ellipse (SDE) are also fitted for each fire patches, and

their half-axes and orientation are provided in longitudinal/latitudinal coordinate system. The values of the minimum and

maximum pixel burn date, and the mean burn date of the fire patch pixel are also provided.

Active fire  pixel  data from the MCD14ML dataset  (Giglio et  al.  2006) consists in a  list  of  geographic coordinates  of

individual active fire pixels detected by the Terra and Aqua sensors onboard the MODIS satellite for the period 2000-2017

with a resolution of 1x1km. For each pixel, the dataset provides the date and hour of burn of the active fire pixel, along with

its fire radiative power (FRP, in MW). We performed a spatio-temporal matching between active fire pixel data and all the

fire patches from the FRY database in order to recover the average FRP for each fire patch. To do so, we consider that an

active fire pixel belongs to a fire patch if it fulfils the two following conditions:

 The centre of the active fire pixel must be located within the SDE of the fire patch. Since the side of an active fire

pixel is 1km, we also consider that an active fire pixel located at a distance of 1km or less from the area covered by

the SDE belong to the fire patch.

 The detection date of the active fire pixel must lie between the minimum minus a 30 days buffer and maximum

burn date of the burned area pixels of the fire patch. The 30 days extension is used to account for the possible time

lag between the detection of an active fire pixel and its associated burned date pixels. 

Once the active fire pixels belonging to each fire patch have been obtained, we compute for each patch the mean FRP value

of all associated pixels. In this analysis, we use FRP as a proxy of fire intensity, later called FI (Wooster et al. 2005, 2013).
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The spatio-temporal matching sometimes fails to recover any active fire pixels for some fire patches. Such fire patches (~20-

25% of each sample) were discarded from the analysis. We observe that the number of fire patches without attributed active

fire pixels raises as the cut-off decreases (see Supplementary Tab 1). This can be explained by the fact that, for low cut-off

values, a real fire event can be split by the flood-fill algorithm in different smaller fire patches. Using a shorter value for the

temporal  buffer  (10 days),  slightly raises the failure rate of the matching, but had no significant impact on the results

presented in this analysis.

The results  presented below have been  computed  for  each of  the 8 different  fire  patch  datasets  of  the FRY database.

However, we will further only focus on the results obtained from the MCD64A1-derived fire patch dataset, with a cut-off

value of 14 days. The figures obtained for the FireCCI41 fire patch product with a cut-off of 14 days (which span the years

2005 to 2011) can be found in Supplementary. The same analysis was also performed with a cut-off value of 3 days for both

MCD64A1 and FireCCI41: testing another extreme cut-off value allows us to estimate the impact of the temporal threshold

parameter used to reconstruct patches by Laurent et al. (2018) on the results.

3 Results

The median FS and median FI are displayed on Figure 1. Large fire patches are located in Australia, in the grasslands of

Kazakhstan, in Namibia and in Sahel, in forested regions of North America and Western Siberia, and in the Brazilian tropical

savannas.  These areas  usually coincide with more intense fires.  The highest  mean FI values  are also reached in South

Australia, the Mediterranean Basin and in the forested areas of Western USA and boreal North America. On the contrary,

fires are both smaller and less intense in croplands of North America, Europe and South East Asia, and in African savannas.

The relationships between the median, 25th and 75th quantiles of FS, and FI for different sub-regions defined by GFED

(Giglio et al. 2013, Supplementary 1) for MCD64A1 with a cut-off value of 14 days are shown in Figure 2. The color of the

dots and error bars represents the average mean of the minimum burn dates of the fire patches in each bin of FI, and the

background histograms the number of fire patches in each FI bins. In all GFED regions, the number of fire patches peaks at

low to intermediate FI values (~20-30 MW). This is in agreement with the observations from Luo et al. (2017), who showed

that fire occurrence peaked at intermediate (~30 MW) FI values. Such an agreement between fire occurrence from active fire

data and the number individual of fire patches from BA is expected, since these quantities are two proxies of the number of

ignitions. 

Our study not only documents the effect of FI on the number of ignition, but also on fire patch size. In most of GFED

regions, we note that median FS and quantiles decreases once a FI threshold is reached (Figure 2). In order to smooth the

estimation  of  this  FI  threshold  (later  called  FIMAX)  above  which  FS  seems  to  saturate,  we  interpolated  a  four-degree
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polynomial to the data and determine the FI at the maximum median FS value of the fit. The results are displayed in Table 1

and Figure 3. For these regions, once FI gets above this regional threshold, the median and 75th quantile of FS decreases.

Equatorial biomes in Central America (CEAM), Equatorial Asia (EQAS) and Southeast Asia (SEAS) experience a humped

relationship between FS and FI. At low FI values (30 to 80 MW), the median and quantiles of FS increases with FI and

reaches a maximum value at low to intermediate FI (Table 1, Figure 3). We also identified in Figure 2 that the fire patches

associated with intense fires having a FI above the regional threshold tend to occur later in the fire season. In tropical areas

of  Northern  Hemisphere  Africa  (NHAF),  Northern  Hemisphere  South  America  (NHSA),  Southern  Hemisphere  Africa

(SHAF),  Southern  Hemisphere  South  America  (SHSA),  and  Australia  (AUST),  but  also  in  Boreal  Asia  (BOAS),  the

relationship between the median and quantiles of FS vs FI is similar. However, the maximum FS is reached at higher FI

values (from 75 to 125MW) than for equatorial biomes, and the decrease following the maximum FS is more gradual.

Intense fire events also appear later in the fire season for BOAS and AUST, and AUST exhibits the peculiar aspect reaching

the highest FS/FI slope (9.0 ha.MW-1 compared to 0.6 to 4.4 ha.MW-1 for other regions). By contrast, in Boreal North

America (BONA), Temporal North America (TENA) and Europe (EURO), and Central Asia (CEAS), mean FS constantly

increases with FI and only reaches a plateau at very high FI (~196 MW for BONA, ~215 MW for TENA and ~240 MW for

EURO). In those temperate and boreal regions, we do not observe the humped shape relation with a decrease of FS for high

FI that occurs in other GFED sub-regions (Figure 2). Middle East (MIDE) also displays a positive correlation between

median FS and FI, but the statistics for intense fire events is too low to infer any significant relationship at high FI values. 

Figure 4 shows in 1ºx1º cells at global scale the month with the largest median FS, the month with the highest median FI,

and the phase shift between these two months. For most African cells, the month with highest median FI is shifted between 3

to 6 months after the month with highest FS. These cells correspond to the regions where high burn area (Giglio et al. 2013)

and a high density of fire patches are detected (Laurent et al. 2018). A narrower shift is observed in SEAS, northern AUST,

and in the cells of South America with a slightly lower number of fire patches and lower BA. In Northern America (BONA

and TENA), BOAS, and central and south AUST, no shift is observed, which means that the largest fires and the most

intense  fires  happened  concomitantly  during  the  fire  season.  Some  cells  (mainly  in  Sahel  and  eastern  BOAS/CEAS)

displayed a negative shift, meaning that the most intense fires happened sooner than the largest fires.

In each 1ºx1º cells, we split the fire season into three periods: early, corresponding to the 4 months before the month with the

highest BA, middle, corresponding to the peak BA month, and late fire season corresponding to the 4 months after the peak

BA month. We did not split the fire patch distribution in different FI categories, because of the big asymmetry of the number

of fire patches between high and low intensity fires. For each period, following the same methodology as in Laurent et al.

2018, we fitted a power law against the fire patch size distribution to estimate the power-law slope parameters β begin, βmiddle

and βend,  and displayed the resulting maps on Figure 5. The β parameters were only computed when more than 10 fire
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patches are available during the considered period, to ensure a  sufficient  number of patches in the fit.  The differences

between βend and βbegin are also shown in Figure 5. Highest β values (either βbegin, βmiddle and βend) happened mainly in NHAF,

northern SHAF, NHSA, SHSA and SEAS, as  observed in previous fire  size distribution analysis (Hantson et  al.  2015,

Laurent et  al.  2018). In these regions,  we found that  the value of β is higher at  the end of the fire season than at  the

beginning, meaning that the proportion of small fires rises through the fire season. In AUST, the β value remains constant all

along the fire season, and it increases in eastern BONA, TEAS, and eastern BOAS, suggesting that later season fires are

more dominated by larger fires. For other regions, the limited number of fire patches render difficult the interpretation of the

evolution of β through the fire season.

4. Discussion

Following the hypothesis from Rothermel’s equation of fire spread, we used the newly delivered global fire patch database

FRY to test if high FI fires propagate faster and are therefore systematically larger than low FI fires. We conclude that this

hypothesis is only verified for low to intermediate FI in most of fire regions, where FI and mean FS are positively correlated.

We identified biome-specific  FI vs FS relationships,  with FI leading to maximum FS being higher in temperate/boreal

forests, followed by savannas and grasslands, and tropical areas. Following the varying constraint hypothesis (Krawchuk and

Moritz 2011), stating that fuel biomass availability is the main driver of fire hazard at global scale, and that fuel moisture

locally modifies this fire hazard when fuel is sufficient to propagate fires, we might expect higher fire spread and energy as a

function of biomass, negatively controlled by fuel moisture. Equatorial areas, with continuous high rainfall amount, then

experience limited fire energy due to low fuel dryness. Along this biomass gradient, temperate and boreal forests experience

a slightly longer drought period during the fire season, inducing a theoretical higher fire severity. Beside these two biomes,

grasslands (temperate or tropical) carry less biomass, yet still sufficient for spreading fires, and should experience the highest

fire spread rate. We noted in the savanna biomes the peculiar case of AUST, with the highest values of the FRP/FS slope,

twice higher than in other continents, but in accordance with local studies (Oliveira et al. 2015b). We suggest here the impact

of wind speed being much higher in AUST compared to other continents (Lasslop et al. 2015). 

However, in most fire-prone biomes, the positive relationship between FS and FI does not hold for larger and more intense

fire patches (Figure 2), generally occurring later in the fire season, as previously observed in Australia by Oliveira et al.

(2015a). This effect could be explained as follows: at the beginning of the fire season, when the moisture content of the fuel

is still high, FRP is limited as energy is consumed for fuel moisture vaporization (Alexander 1982, Pyne et al. 1996) and

consequently, fire size gets limited too. As the fuel  becomes dryer along the fire season (Sow et  al.  2013, Sedano and

Randerson 2014) fires become more intense and potentially propagate further. However, as mentioned in the introduction,

the  propagation  of  larger  fires  can  hit  some  limits  because  of  the  fragmentation  of  the  fuel  matrix,  due  to  intrinsic

anthropogenic fragmentation, roads or grazing fields, which limit FS as fires became larger through the fire season. As a
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result, in fire regions with fragmented vegetation, such as African savannas, SEAS or at the interface between the amazon

forest and croplands of South America, a maximum mean FS is reached at intermediate FI (Figure 2). The FI threshold

differs however between these regions, possibly because their level of landscape fragmentation is different (Taubert et al.

2018). 

If fire size would only be limited by the intrinsic structure of vegetation, we would not expect to see the decrease of the

proportion of large fires the end of the fire season in fire-prone ecosystem shown in Figure 5. If the number of individual fire

events was already high at the beginning of the fire season, the landscape becomes even more and more fragmented by

burned area scars (Oliveira et al. 2015), meaning that the limitation of fire size due to landscape fragmentation will be higher

for fires ignited later in the fire season. As a consequence, this mechanism may explain why the correlation between FI and

FS becomes negative in Figure 2 during the late fire season in NHAF, NHSA, CEAM, EQAS and SEAS, and why β end is

higher than βbegin. This limitation of fire size for intense fires in those regions, possibly due to the feedback between fire and

fuel connectivity at landscape level, is in line with the results obtained from Mondal and Sukumar (2016) relating the effects

of recent past fires on fire hazard in dry tropical forests, and otherwise theoretically approached from the percolation model

applied to wildfires by Archibald et al. (2012). This model shows that the amount of BA is maximized when both the fire

spread probability and the fuel matrix connectivity are high. BA dramatically drops if fire spread probability is too low (such

as in the beginning of the fire season) or if the fuel array connectivity becomes too low (such as in the end of the fire season).

Particularly, the percolation model shows that BA dropped dramatically once 50-60% of the available fuel has burned, which

is  close  to  the  maximum percentage  of  BA detected  by both MCD64A1 and FireCCI41 products  (Giglio  et  al.  2013,

Chuvieco et al. 2016). The IFOI hypothesis, proposed by Luo et al. (2017) to explain why fire occurrence is limited by fire

intensity, can be interpreted as a direct consequence of percolation theory applied to fire-prone ecosystems.

 

For regions where fire events are less frequent, such as in BONA, TENA and EURO (Figure 2), there is no significant

limitation of fire spread and fire size, suggesting that the fragmentation of landscape either from land use or from early

season burn scars does not limit fire spread (Owen et al. 2012). Fire size remains positively correlated with fire intensity all

along the fire season. Moreover, the 75th quantiles for BONA and TENA is higher than for tropical regions (except AUST),

most probably because tree species in BONA and TENA are more flammable (e.g. spruce) and because crown fires are more

frequent, and because these ecosystems experience an actual drought period compared to the tropics where rainfalls occur all

year long. They can therefore propagate further than ground fire and fire resistant species found in savannas and woodlands

in semi-arid tropical regions. In BOAS the relationship between FS and FI is different from the one observed in BONA and

TENA. This could be a result from the less flammable vegetation and the highest number of ground fires (Kasischke and

Bruhwiler 2003). Moreover, BA detection of surface fires (and consequently, fire patch characterization) is known to be

difficult in boreal Asia, and numerous discrepancies have been observed between the BA products obtained from different

moderation resolution sensors (Chuvieco et al. 2016).
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The median FS is globally lower for the datasets generated from FRY with smaller cut-off value (see Supplementary 1 and

2), because big fire patches tend to be split in smaller patches for lower cut-off values, reducing the average fire patch size.

The median FS is also lower for the FireCCI41derived datasets, due to its ability to detect smaller patches from its better

spatial resolution. Changing the survey or the cut-off value does not impact the global distribution of large and small fire

patches. Reducing the cut-off to 3 days does not change the observed relationship between FS and FI. The results obtained

from the dataset  derived from FireCCI41 follows the same trend, but for some GFED regions (TENA, EURO, NHSA,

AUST) the seasonality is shifted one month later than for MCD64A1. Reducing the cut-off values lowers the temporal shift

observed on Figure 4 at global scale (Supplementary 3 and 4), but the global distribution of the shift is conserved. Similarly,

FireCCI41 yields smaller shifts than for MCD64A1, but with the same spatial distribution.

Fire danger index has been constantly increasing during the last 50 years (Jolly 2015) and could impact fire season length

and/or intensity all over the world. An increase of drought intensity in fire prone environment could yield to more intense

fire events, yielding larger burned area patches for each fire event. However, if the progressive fragmentation of landscape

through the fire season limits fire size, then it can be expected that a longer fire season would only have a limited impact on

the increase of BA in these regions. In the same way but on a longer time scale in less fire prone regions, previous large fires

have been shown to limit FS in the recent timeframe in western US (Haine et al 2013), and previous landscape biomass

composition, as a result of fire history, is a major factor affecting fire severity in boreal forests (Whitman et al. 2018). On the

contrary, in regions where the quasi-linear relationship between fire size and FRP is valid even for high FRP, a longer fire

season could dramatically increase burn area, particularly in North America and Europe (Gillett et al. 2004, Turetsky et al.

2011).  This hypothesis does not account for the impact of increased severity of fire damage to the vegetation in these

ecosystems, and its feedback on fire propagation and occurrence. Our results are consistent with those of Andela et al. 2017,

who showed that, contrary to what would be expected from the rise of the fire danger index, BA tends to decline at global

scale  (25%  loss  between  1998  and  2015).  This  decline  is  especially  strong  in  savannas  and  grasslands,  because  of

agricultural  expansion,  which  results  in  a  reduction  of  burnable  area  and  a  more  fragmented  landscape.  Landscape

fragmentation is also a tool used for fire management. Indigenous burning practices in West Africa promotes early burning

and therefore landscape fragmentation in order to limit large and intense fire events which could occur at the end of the fire

season (Laris and Wardell 2006, Archibald 2016). Similarly, US forest services used artificial fuel-breaks to fragment the

landscape and limit fire size (Green 1977, Agee et al. 2000), as well as fire intensity (Ager et al. 2017).

Some DGVM fire modules explicitly simulate BA as the product of individual successful fire ignitions with mean fire size

(Thonicke et al. 2010, Yue et al. 2014). In these models, fire size usually depends on wind speed, fuel bulk density and fuel

load. It is common than BA saturates toward the end of the drought season because of the reduction of the available fuel load

due to burning by preceding fires, but this mechanism does not account for landscape fragmentation (due either to land use
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fragmentation or progressive fragmentation by fires). The LPJ-LMFire v1.0 (Pfeiffer et al. 2013), a modified version of the

Spitfire  module  for  pre-industrial  global  biomass  burning,  accounted  for  passive  fire  suppression  due  to  landscape

fragmentation. Further refining of process-based fire modules would require extensive comparison with fire patch data rather

than raw BA.

5. Conclusion

We characterized for the first time the actual relationship between fire size and fire intensity using a combination of fire

patch size and active fire datasets at global scale. We found that in most fire-prone ecosystems, fire size increases with fire

intensity only at low fire intensity, reaches a threshold at intermediate intensity, and then starts to decrease. On the contrary,

in temperate and boreal forests, FS and FI are proportional even for high fire intensity. This behavior is observed for both

MCD64A1 and FireCCI41 products, and for all cut-off values used for fire patch reconstruction. We suggested that the FI

threshold value is  driven by drought  severity, available biomass,  the fragmentation of  the landscape,  and the feedback

between  fuel  connectivity  and  burn  area  during  the  fire  season.  This  fragmentation  hypothesis  is  consistent  with  the

percolation model applied to fire spread. The fragmentation hypothesis should be further tested with higher resolution BA

datasets, combined with fine temporal resolution land cover datasets characterizing the landscape fragmentation, associated

with temporally varying fuel moisture data, and further considered in fire-DGVM models. Additional information as fire

shape complexity and elongation from the FRY database should bring substantial information to assert our conclusions.
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Figure 1: Mean fire size FS (patch area in ha) and fire intensity FI using FRP as proxy (in MW) for MCD64A1 with a cut-off of 14
days in the patch reconstruction algorithm.
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Figure 2: Median FS vs FI for different GFED regions. The error bars represent the 25th and 75th quantiles of the FS distribution.
The color of the dots and error bars represent the mean burn date of fire patches in each FI bin.
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Figure  3: FI threshold (FIMAX, in MW) vs slope between FI and median FS (in ha.MW-1) before FIMAX  for the different GFED
subregions.  Green  dots  represent  GFED  subregions  dominated  by  tropical  forests,  red  dots  the  subregions  dominated  by
grasslands/savannas and black dots the subregions dominated by temperate/boreal forests.
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Figure 4: Month with highest median FRP (top left), highest median FS (top right), and the difference between the two (bottom).
In blue cells, the month with the largest fires events happen before the month with the most intense fires. In red cells, the month
with the largest fires events happen before the month with the most intense fires. In yellow cells, the months with the largest fires
and with the most intense fires are the same.
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Figure 5: Value of the log-log scale slope of the fire size distribution at the beginning of the fire season, beta (4 months before the
month with the highest amount of BA), in the middle of the fire season (corresponding to the month with the highest BA) and at
the end of the fire season (4 months after the month with highest BA).
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GFED Region FI at maximum size (MW) Slope  of  the  FI  vs  median  FS

relationship before max FS (ha.MW-1)

BONA 196 4.4

TENA 215 1.4

CEAM  84 0.8

NHSA 81 3.0

SHSA 105 2.4

EURO 240 0.6

MIDE 200 0.6

NHAF 78 3.1

SHAF 116 2.5

BOAS 86 3.4

CEAS 160 1.4

SEAS 38 1.6

EQAS 60 3.1

AUST 142 9.0

Table 1 : Value of the FI threshold at maximum median FS, and the slope of FS vs FI before the threshold value for different
GFED regions.
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